IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 1855-1878

A constitutive model for the Mullins effect with permanent
set in particle-reinforced rubber

A. Dorfmann ®*, R.W. Ogden °

& Institute of Structural Engineering, University of Vienna BOKU, Peter Jordan St. 82, 1190 Vienna, Austria
b Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

Received 20 May 2003; received in revised form 24 October 2003

Abstract

Stress softening during initial loading cycles, known as the Mullins effect, and the residual strain upon unloading are
not accounted for when the mechanical properties of rubber are represented in terms of a strain-energy function, i.e. if
the material is modelled as hyperelastic. In this paper we first describe some experimental results that illustrate stress
softening in particle-reinforced rubber together with associated residual strain effects. In particular, the results show
how the stress softening and residual strain change with the magnitude of the applied strain. Then, on the basis of these
data a constitutive model is derived to describe this behaviour. The theory of pseudo-elasticity is used for this model, the
basis of which is the inclusion of two variables in the energy function in order separately to capture the stress softening
and residual strain effects. The dissipation of energy, i.e. the difference between the energy input during loading and the
energy returned on unloading is also accounted for in the model by the use of a dissipation function, which evolves with
the deformation history.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This study is concerned with the formulation of a constitutive model to capture certain inelastic effects in
particle-reinforced rubbers subjected to uniaxial loading—unloading cycles in tension. As a basis for the
modelling we use some recently obtained experimental data. The effects of strain history on the stresses and
the formulation of constitutive models for filled and unfilled elastomers have been a particular focus of
attention during the last few years. This is evidenced by the large number of recent publications, repre-
sentative examples being the papers by Govindjee and Simo (1991, 1992a,b), Johnson and Beatty (1993,
1995), Lion (1996, 1997), Papoulia and Kelly (1997), Kaliske and Rothert (1998), Reese and Govindjee
(1998), Septanika and Ernst (1998), Ogden and Roxburgh (1999a,b), Miehe and Keck (2000), Beatty and
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Krishnaswamy (2000), Meisner and Maté&jka (2000, 2001) and Dorfmann et al. (2002). Valuable sources of
references are also contained in the collections of papers from the proceedings of the first two European
Conferences on Constitutive Models for Rubber edited by Dorfmann and Muhr (1999) and Besdo et al.
(2001). This interest has been generated and maintained by the increasing industrial use of carbon black
(CB) filled elastomers, for example in vibration isolators, earthquake bearings, seals and flexible joints in
addition to extensive use in vehicle tires. Accidents caused by the failure of components made of CB-filled
elastomers, for example the explosion of the space shuttle Challenger in 1986 or the recent well-publicized
failure of the Firestone ATX/AT tires, has brought to light the need for a better understanding of the basic
physical properties of these materials and the possible causes of failure. Pre-requisites for this under-
standing are suitable experimental data and a good constitutive model for the material behavior.

Particle-reinforced rubbers exhibit a marked hysteretic response during unloading after loading in
uniaxial tension, compression or shear, for example, i.e. the stress on unloading is significantly less than
that on loading at the same strain. The difference in the stresses corresponding to the same strain level under
loading and retraction depends primarily on the proportion of filler in the rubber compound; for unfilled
rubber the difference is negligible but it becomes very marked for elastomers with a high CB content. The
stress difference is greatest during the first loading—unloading cycle and approaches a fixed (strain-depen-
dent) value after a number of cycles. For more details we refer to, for example, Lion (1996) and the refe-
rences therein.

When an unfilled or CB-reinforced rubber is subjected to cyclic loading with a fixed amplitude in simple
tension, compression (Bergstrom and Boyce, 1998) or shear (Ernst and Septanika, 1999; Sedlan, 2000) from
its initial (virgin) natural configuration, the stress required on reloading is less than that on the initial
loading for elongations up to the maximum elongation achieved. The stress differences in successive loading
cycles are largest during the first and second cycles and becomes negligible after about 6-10 cycles,
depending on the amount of filler and maximum extension. Experimental results illustrating this phe-
nomenon for both unfilled and particle-reinforced rubber were first published in a series of papers by
Mullins and co-workers starting in the late 1940’s and became known as the Mullins effect (Mullins, 1947,
1969; Mullins and Tobin, 1957, 1965; Harwood et al., 1965; Harwood and Payne, 1966a,b, 1967). Different
micro-mechanical interpretations have been provided in order to explain the softening phenomenon. The
observed stiffness reduction was initially attributed solely to the rupture of filler clusters and to the sepa-
ration of weak polymer chains from the fine particle fillers. However, the concept of rubber-filler interaction
is not on its own sufficient to explain this phenomenon since the effect is present in unfilled as well as
reinforced elastomers. Other micro-mechanical interpretations have been provided in order to explain this
effect; for example, the untangling or breakage of weak crosslinks in unfilled rubber or different forms of
separation of weak bonds between filler particles and long chains in filled rubber. A selection of the large
number of works published on this topic are the papers by Bueche (1960, 1961), Bonart (1968), Dannenberg
(1974), Rigbi (1980), Lee and William (1985), Roland (1989a,b,c), Muhr et al. (1999), Krishnaswamy and
Beatty (2000), DeSimone et al. (2001), Drozdov and Dorfmann (2001) and Marckmann et al. (2002).

A CB-filled rubber after loading and subsequent unloading does not in general return to its initial state
corresponding to the natural stress-free configuration, but exhibits a residual strain or permanent set (which
slowly decreases in time and essentially disappears after a sufficiently large period of annealing). The
magnitude of the residual strain depends on the amount of CB in the rubber and on the maximum elon-
gation of the rubber specimen prior to unloading. For unfilled rubber the magnitude of the residual strain is
negligible; however, for filled compounds it is significant and increases with the CB filler volume fraction.
For series of experimental data we refer to, for example, the work of Lion (1996, 1997).

The hysteretic behaviour, the stress softening associated with the Mullins effect and the residual strain
are not accounted for when the mechanical properties are represented in terms of a strain-energy function,
i.e. if the material is modelled as hyperelastic. In this paper the theory of pseudo-elasticity due to Ogden and
Roxburgh (1999a) is used to model the softening and residual strain characteristics of reinforced rubber.
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It is to be recalled that the term pseudo-elasticity is used in the scientific literature do describe material
behaviour with hysteretic characteristics, i.e. the loading—unloading response does not coincide, even
though the body returns to the original state. This terminology was used, for example, by Fung (1980) to
describe the response of biological tissues and by Miiller (1986) to model the response of shape-memory
alloys.

Ogden and Roxburgh (1999a) used a single additional (softening) variable to model the idealized Mullins
effect. In the present paper the model is based on the inclusion of two additional variables in the energy
function so that it is modified to capture the observed softening and residual strain response. This approach
uses an internal variable, damage like approach involving specific, implicit statements for complimentary
relationships. The dissipation of energy, i.e. the difference between the energy input during loading and the
energy returned on unloading is accounted for in the model by the use of a dissipation function, which
changes between unloading and subsequent reloading beyond the previous maximum strain.

The paper is organized as follows. In Section 2 we summarize experimental results for simple tension
for three rubber compounds with different proportions of filler. In Section 3 we outline the required
equations of nonlinear elasticity, first for general deformations and then for the appropriate pure homo-
geneous strain specialization. The necessary equations of pseudo-elasticity are provided in Section 4. These
equations are then adapted in Section 5 in order to capture the inelastic effects of CB-reinforced rubbers.
Then, in Section 6, the theory of Section 5 is used to fit the actual data. Section 7 contains some concluding
remarks.

2. Experimental results

To assess the effect of stress softening and the magnitude of the accumulated residual strain in particle-
reinforced rubber, several series of periodic loading—unloading uniaxial extension tests were carried out
at constant temperature. Dumbbell specimens were provided by SEMPERIT (Austria). Three different
natural rubber compounds were used, the first with 1 phr (by volume) of CB filler, the second with 20 phr
and the third with 60 phr. A filler content of 1 phr does not affect the mechanical behaviour significantly
compared with that of an unfilled rubber and can therefore be considered as essentially unfilled.

The periodic loading, unloading and reloading tests were performed using a constant strain rate of 0.02
s~! at a constant temperature of 25 °C. To measure the longitudinal strain, mechanical grips, separated by
an initial distance of 15 mm, were applied to the central part of each specimen before loading. Changes in
the distance between these grips were measured with an accuracy of less than 3 um. The tensile force was
measured by using a standard loading cell with an accuracy of 0.05 N. The nominal stress was determined
as the ratio of the axial force to the (undeformed) cross-sectional area of a specimen (2 mm x4 mm) in the
stress-free state, all specimens having the same dimensions.

During the first series of tests one specimen from each compound was subjected to six cycles of pre-
conditioning up to a pre-selected extension with stretch A = 3. The pre-conditioning was performed in order
to monitor the progression of stress softening, to evaluate the accumulation of residual strain and to
determine the ultimate stress-deformation response for stretches up to A = 3. The results are reported as
nominal stress versus stretch 4 and are shown in Figs. 1-3. Fig. 1 shows the stress-stretch response for the
natural rubber compound with 1 phr of CB. Figs. 2 and 3 show corresponding results for compounds with
20 and 60 phr of CB filler, respectively. Fig. 4 shows the accumulation of residual strain with the number of
loading—unloading cycles for the three compounds. The following observations are made:

e There are large differences in the stresses corresponding to the same strain level under loading and
unloading during the first cycle in periodic tests with a fixed strain amplitude. The differences increase
with the amount of CB in the compound.
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Fig. 1. Pre-conditioning of a particle-reinforced dumbbell specimen with 1 phr of carbon black with maximum stretch 4 = 3.

e There is a reduction in the stress at a given strain on each successive loading. The reduction is largest on
the first and second loading—unloading cycles and becomes rather small after about six cycles. Again, the
reduction in the stress increases with the amount of CB.

e Residual strains are evident in all three compounds. The major part of the residual strain in each case is
generated during the first loading—unloading cycle. The increase in this permanent set continues through
all six cycles, but it appears to reach a fixed value, which is largest for the compound with the largest
content of CB filler.

e After the six pre-conditioning loading—unloading cycles the stress-stretch responses are essentially
repeatable and additional stress softening and residual strain generated are negligible.

e The effects of stress softening and residual strain, even though present, are not of major concern for
unfilled compounds and elastomers with a very low content of CB.

We note that the degree of stress softening and the magnitudes of the residual strains are dependent on
time and temperature. However, in this study we are not concerned with phenomena such as thermal
recovery and viscous effects.

In the second series of experiments, three additional specimens of the same rubber compounds were each
subjected to periodic loading up to three different, but fixed, stretches. These tests were all carried out at the
same strain rate of 0.02 s~! and at the same constant room temperature of 25 °C. Each of the specimens was
subjected to six loading—unloading cycles up to 4 = 1.5. After completion of the sixth unloading cycle, each
specimen was then loaded up to a stretch of A =2 and again subjected to six cycles. The stretch was then
increased to 4 = 2.5 and six additional loading—unloading cycles were performed. No recovery time was
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Fig. 2. Pre-conditioning of a particle-reinforced dumbbell specimen with 20 phr of carbon black with maximum stretch 4 = 3.

allowed during the 18 loading—unloading cycles. The results are shown for the compound with 1 phr in Fig.
5 and for the compounds with 20 and 60 phr in Figs. 6 and 7, respectively.
The following additional observations are made.

e The stresses obtained for specimens loaded cyclically up to A = 1.5 and successively to 1 =2.0 and
A = 2.5 should be compared with those at the same values of stretch for the specimens loaded directly
to 2 = 3.0. There is no significant difference for A up to about 1.5 but thereafter the difference becomes
marked with increasing A.

e The accumulated residual strain depends on the maximum stretch of the specimen during the previous
loading cycle, i.e. larger stretch translates into larger residual strain. The residual strain accumulated
during the first loading up to a given stretch constitutes the major part; additional cycles up to the same
stretch add proportionately less residual strain (see Fig. 8).

e The magnitude of the accumulated residual strain does not depend linearly on the maximum elongation.
It can be seen from Fig. § that the magnitude of the residual strain is proportionately larger during
the initial periodic loading up to 4 = 1.5. Doubling the strain to A =2 does not double the residual
strain.

e The degree of stress softening during the first few loading—unloading cycles depends on the maximum
elongation achieved. The stress softening is much more severe, for example, for loading to a maximum
stretch of 4 = 2.5 than for a maximum stretch of 1 = 1.5.

e All these phenomena depend on the proportion of carbon black in the compound. In particular, both the
stress softening and residual strain increase with the filler content.
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Fig. 3. Pre-conditioning of a particle-reinforced dumbbell specimen with 60 phr of carbon black with maximum stretch 1 = 3.

3. Basic equations

For full details of the relevant theory of elasticity summarized in this section the reader is referred to, for
example, Ogden (1984, 2001) and Holzapfel (2000).

We consider a rubberlike solid regarded as a continuous body. Let points of the body be labelled by their
position vectors X in the initial (unstressed) configuration relative to an arbitrarily chosen origin. Suppose
that when the body is deformed the point X has a new position X in the resulting deformed configuration of
the body.

For simplicity we consider only Cartesian coordinate systems and let X and x respectively have coor-
dinates X, and x;, where «,i € {1,2,3}, so that x; depends on X,.

The deformation gradient tensor, denoted F, is given by

F = Grad x (1)

and has Cartesian components F;, = Ox;/0X,, Grad being the gradient operator with respect to X. For a
volume preserving (isochoric) deformation we have
detF = 1. (2)
Here, we assume that (2) holds for all deformations, so that the material is incompressible.
The deformation gradient can be decomposed according to the (unique) polar decompositions

F = RU = VR, (3)
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Fig. 4. Accumulation of residual strain for particle-reinforced dumbbell specimen with 1, 20 and 60 phr of carbon black as a function of
the number of loading-unloading cycles (constant maximum stretch of A = 3).

where R is a proper orthogonal tensor and the tensors U, V are positive definite and symmetric, respectively
the right and left stretch tensors. These can be expressed in spectral form. For U, for example, we have the
spectral decomposition

3
U= Z ) @u, (4)
i

where the principal stretches /; > 0,7 € {1,2,3}, are the eigenvalues of U, u'” are the (unit) eigenvectors of
U, referred to as the Lagrangian principal axes, and ® denotes the tensor product. It follows from (2)-(4)
that

Iidais = 1. (5)

3.1. Hyperelasticity

In the theory of hyperelasticity there exists a strain-energy function, denoted W = W (F), defined on the
space of deformation gradients subject, since we are considering incompressible materials, to the constraint
(2). The nominal stress tensor, denoted S, is given by

aW 1
S_ﬁ_ F s detF—l, (6)
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Fig. 5. Periodic uniaxial extension tests of a particle-reinforced dumbbell specimen with 1 phr of carbon black with maximum stretches
of A1=1.5,2=2.0and A =2.5.

where p is a Lagrange multiplier associated with the constraint (2) and represents an arbitrary hydrostatic
pressure. The Cauchy stress tensor, denoted o, is given by
ow
=FS=F——pl, detF=1 7
a aF p b e ) ( )
where I is the identity tensor. We take W and the stress to vanish in the reference configuration.
According to the principle of objectivity, W depends on F through U and we write

W (F) = w(U). (8)
The (symmetric) Biot stress tensor T is then defined by
ow
T=—_——pU’! =1
30 U™, detU 9)

3.1.1. Isotropic hyperelasticity

For an isotropic elastic solid W depends on U only through the principal stretches 1,4, 43 and is a
symmetric function of the stretches. We write this dependence as W (4, A, 4;). Consequences of isotropy
are that S = TR” and that T is coaxial with U. Thus, similarly to (4), we have

3

T= Z tu? @u?, (10)

i=1
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Fig. 6. Periodic uniaxial extension tests of a particle-reinforced dumbbell specimen with 20 phr of carbon black with maximum
stretches of A = 1.5, A=2.0 and 1 =2.5.

where ¢, i € {1,2,3}, are the principal Biot stresses, given by

ow
ti:a— )v;l, )bl/b}g: l (11)

The principal Cauchy stresses a;, i € {1,2,3}, are

ow
i = Aiti = Ai —D- 12
7 ! 0l P (12)

3.1.2. Application to homogeneous biaxial deformations

In this subsection we apply the theory described above to the problem of homogeneous biaxial strain. On
use of the incompressibility constraint (5), the strain-energy function can be written in terms of two
independent stretches in the form

W (o, ha) = W(hi, day 27051, (13)

which is symmetric in A; and Z,. Then, from (12), after eliminating the pressure p, we obtain the Cauchy
stress differences
ow ow
Oy = A —. 14
oa 02 — 03 1 o, ( )

01— 03 =4
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Fig. 7. Periodic uniaxial extension tests of a particle-reinforced dumbbell specimen with 60 phr of carbon black with maximum
stretches of A =1.5, A =2.0 and A =2.5.

Egs. (14) provide a basis for characterizing the form of the energy function using biaxial tests in which 4,
and 4, are varied independently, for more detail we refer to Ogden (1982, 1986, 2003a,b). For this purpose
and without loss of generality we can set a3 equal to zero so that, in particular, Eq. (14) become
ow ow
0'121111:)46—/11, gy = vztzzlla—/b. (15)
Accurate determination of material model parameters included in I7V(/11 , 72) requires use of (15) with # and
t, measured for given pairs of values of 4, and 7,.

3.1.3. Simple tension and compression
In the simple tension (or compression) specialization we take 4, = A3, and we use the notation

=4 Jp=A"12 (16)
The strain energy then depends on the one remaining independent stretch, and we write
W) =W, i, (17)
In this case 0, = g3 = 0 and the Cauchy and nominal (or Biot) stresses associated with A; are respectively
AW (2) o dwW(A)
frng frnd = == 18
e VI il ) (18)
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Fig. 8. Accumulation of residual strain for particle-reinforced dumbbell specimen with 1, 20 and 60 phr of carbon black. Periodic
loading—unloading is performed with three different, but constant values of maximum stretches, i.e. A =1.5, A =2.0 and 1 =2.5.

4. Pseudo-elasticity

Based on the theory of pseudo-elasticity developed by Ogden and Roxburgh (1999a,b), we use a strain-
energy function W (F) appropriate for hyperelastic materials and modify it by incorporating into it two
additional variables, denoted #, and #,. Thus, we write

W= W(F”'ID”Z)' (19)

In the context of the Mullins effect, which is related to material damage, 7, is referred to as a damage or
softening variable. The Mullins effect was modelled using one such variable by Ogden and Roxburgh
(1999a). The second variable 7, is used here to describe the accumulation of the residual strain in loading—
unloading cycles and is referred to as a residual strain variable. Both variables depend on the maximum
strain achieved previously. The inclusion of #, and 7, provides a means of changing the form of the energy
function during the deformation process and hence changing the character of the material properties. In
general, the overall response of the material is then no longer elastic and W (F,n,,1,) is referred to as a
pseudo-energy function. The resulting theory is referred to as pseudo-elasticity theory. In this section we
summarize the main ingredients of the theory.

The variables 5, and 1, may be active or inactive and a change from active to inactive (or conversely)
changes the material properties. This change may, for example, be induced when unloading is initiated.

During primary loading 7, and #, are inactive and we set them equal to a constant value. Without loss of
generality, we assume the constant value to be unity and write
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for the resulting strain-energy function. The subscript 0 in (20) indicates that the strain-energy function
Wy (F) describes the material response when 7, and 5, are inactive. For an incompressible material the
associated nominal stress is given by

oWy

So=3F

(F) —poF', detF =1, (21)
where the subscript 0 here and subsequently is used to indicate that #, and 7, are inactive. If #, and n,
become active we take them to depend on F. The nominal stress for an incompressible material subjected to
the constraint det F = 1 is then given by

o ow on, ow on, i

S - 6F (F7 17177]2) + 6771 (F7 7]17'/]2) 6F (F) + a”lz (F7 n1, ;/]2) 6F (F) pF . (22)
It is convenient to assume that 7, and 5, are given implicitly by

ow ow

— (F,ny, =0, —(F,n, =0, 23

o (F,m1,1m,) o, (F,m1,1m,) (23)
so that (22) reduces to

ow
S:ﬁ(Fanl7n2)_pF717 detF:17 (24)

which applies whether or not #, and 7, are active. When #, and 5, are active, the two equations (23) are
used to determine #; and #, in terms of F.

4.1. Isotropy

For an isotropic material the pseudo-elastic energy function (19) assumes the form
W (21,22, 23,1, 1), (25)

where (41, 4, 43) are the principal stretches associated with the deformation from the reference configu-
ration. As in Section 3.1.1, W is a symmetric function of the stretches, which are subject to the incom-
pressibility constraint (5). Eq. (23) specialize to

ow ow
_ﬂivia ) :Oa _)'7"7&7 ’ :07 26
on, (41522, 23,11,15) a’h( 142, 43,115 12) (26)

which give #, and 5, implicitly in terms of the stretches.
The principal Cauchy stresses g; are given by

ow

0i = /lia_if_p’

ie{1,2,3}, (27)

as in (12), but (27) applies whether or not 7, and 5, are active.
Since the material is incompressible it is convenient to adapt the notation used in (13) and define the
modified pseudo-energy function W (4,2, 1,,1,) by

I//f/(}“] ’ /’LZa My, 172) = W(/Ih j'27 )”171)"27] » s 772) (28)
Then, on elimination of p from (27), we obtain the principal stress differences

0'1—0'32/11’//[\/17 0'2—0'32121/7/2, (29)
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where #; and 7, denote the partial derivatives of W with respect to A, and 4, respectively. Eq. (26) are then
modified to
ow ow
— (A, 4 =0, — (4,4 =0 30
6711 ( Iy 2;7]177]2) ) 6112( 1y 27’7177]2) ’ ( )
and hence 77, and », are now given implicitly in terms of 4, and 4, only.
We define the function W;(4, 4,) via

I;\V()(ih)ﬂ) = W(;“la;LZalal)a (31)

which is the isotropic specialization of (20). This is the energy function of an incompressible isotropic elastic
material for which 5, and #, are inactive. From (29) the specialization (31) yields the stress differences

oo1 — 003 = W Wo1,  0op — 093 = Ao W, (32)

where the subscript zero again refers to a deformation path on which #; and 7, are not active and (30) is not
operative. A subscript 1 (respectively 2) following the subscript 0 on # indicates partial differentiation with
respect to 4, (respectively 4,).

For compatibility with the classical theory VAVO(M, /») must satisfy

Wo(1,1) =0, Wo,(1,1) =0, Won(1,1) =2, Wone(1,1) = 4y, (33)

where u(> 0) is the shear modulus of the material in the initial (virgin) reference configuration and the
index o takes the value 1 or 2.

When #, and #, are active we suppose that Eq. (30) can be solved explicitly for 5, and 7, and we write the
solution as

N = N1 (A1, 42) = N (A2, 1)y 1 = N0 (A1s A2) = Nea(Z2, Aa)- (34)

Then, an energy function for active #, and 7,, symmetrical in (1, 4,) and denoted w(2;, 4,), may be defined
by

W(ir, 72) = W (3, da (3, 72) (B, 72). (35)
From Egs. (29), (30) and (35) it follows that
Oy — 03 = AOW /02y = 2,0W [0y, a=1,2. (36)

4.1.1. Simple tension
As in Section 3.1.3, for simple tension we take o, = 03 = 0 and write o, = . We also write 4; = 4, so
that 2, = 3 = A~"/%, and define W by

W(ivr]lv;h) = V/f/(iv j'71/277711’72)' (37)
Eqgs. (36) and (30) then specialize to
0= )~V~Vi()~77]17’12) = )'tv I7V,11 (;Lvnlan2) = 07 ﬁ/ﬂz()“vnlarh) = 07 (38)

wherein the principal Biot stress #(= #) is defined and the subscripts signify partial derivatives.
By defining

Wo(2) = W(2,1,1), (39)
we may deduce from (33) the specializations
Wo(1) = my(1) =0, W'(1) =3p, (40)

where the prime signifies differentiation with respect to A.



1868 A. Dorfmann, R.W. Ogden | International Journal of Solids and Structures 41 (2004) 1855-1878

This simple tension specialization will be examined in detail in connection with the description of stress
softening and accumulation of residual strain in Section 5.

5. A constitutive model for the Mullins effect with residual strain

The theory discussed in Section 4 is a very general framework and allows considerable flexibility in the
choice of specific models. To proceed further it is necessary to make such a choice. In this section therefore
we choose a simple formulation for the pseudo-elastic energy in order to model the combination of stress
softening and residual strain. The material is again taken to be incompressible and (initially) isotropic and
we use a pseudo-energy function to represent loading and unloading in the form

V/I\/(;vla;Q: ’717'72) =m V/I\/()()“l’;@) + (1 - ﬂz)ﬁ(ilv )‘2) + ¢("17’72)> (41)

where the function N is introduced in order to characterize the residual strains and the function ¢ is re-
ferred to as a dissipation function. The latter must satisfy ¢(1,1) = 0. If we set , = 1, then (41) reduces to
the specific model for the Mullins effect developed by Ogden and Roxburgh (1999a).

For the sake of simplicity, we take ¢(n,,7,) to be decoupled in the form

d(nim) = ¢1(m) + ¢2(m2), (42)
where the functions ¢,(y,) and ¢,(n,) satisfy

¢ (1) =0, ¢,(1)=0. (43)
From (32), (36) and (41), the Cauchy stress differences are calculated as

02— 03 = 2oy + (1 =)oy 2 =1,2 (44)
and Eq. (30) become

¢y (m) = = Wo(d, 2a),  P5(m) = N (4, ), (45)

which, implicitly, define the variables #, and #, in terms of the stretches.
5.1. Uniaxial loading

We define a loading path in (J;, 4,)-space as a path starting from (1,1) on which 7, is increasing. As
mentioned by Ogden and Roxburgh (1999a), for many standard forms of strain-energy function W, is
increasing along any straight line path from (1,1) and contours of constant energy are actually convex in
(41, 42)-space. On the basis of the equations in Section 4.1.1 the specialization of (41) with (42) for simple
tension is

W (i, m) =m Wo(2) + (1 = m)N(2) + 1 (n) + (o). (46)
For uniaxial loading from the natural (stress free) configuration the above equation becomes
W, 1,1) = Wy(h), (47)

where the softening parameter #, and the residual strain parameter #, are both inactive and each assumes
the value unity, as specified in (39). During primary loading of an initially undamaged material, the
functions ¢, and ¢, must satisfy (43). The uniaxial Biot stress for primary loading becomes

to=W'(2,1,1) = W(A). (43)
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5.2. Uniaxial unloading

When unloading is initiated from any point on the primary loading path, the variables n, and 1, become
active and the form of the energy function changes continuously, as does the stress. Using (38) and (46) the
Biot stress ¢ is calculated as

t=th+tH=mn VNVO,(A) + (1= m)N'(2) = mto + (1 — ny)N'(4), (49)

where the contribution of ¢ is associated primarily with the Mullins effect, while that of ¢, is related to the
accumulation of residual strain. In Eq. (49) the Biot stress #, on the primary loading path at the same value
of /1 is given by (48).

5.2.1. The softening effect

For (49) to predict the Mullins effect on unloading, at the start of which #, is switched on, it is clear that
we must have 7, < 1 on the unloading path, with equality only at the point where unloading begins. We take
1, > 0, so that #; remains positive on unloading until 2 = 1 is reached, at which point #, vanishes.

To obtain an expression for the softening parameter 7, for simple tension we specialize (45), to uniaxial
unloading, so that

¢y (m) = =T (2). (50)
On differentiation of (50) with respect to 4 we obtain
1" d’? 7! (1
B ) G = ~ T3 (2). (s1)

In view of the stress softening requirement discussed above we associate unloading with decreasing #,. Since
to = Wy(4) > 0 for 1 > 1 it follows from (51) that

¢7(m) <0, (52)

and, as in Ogden and Roxburgh (1999a) and Dorfmann and Ogden (2003), we assume henceforth that this
inequality holds. We deduce that ¢} (5,) is a monotonic decreasing function of », and hence that in principle
1, 1s uniquely determined from (50) as a function of Wy(4).

It is important to point out that the value of #; derived from (50) depends on the value of the maximum
principal stretch 4,, on the loading path, as well as on the specific forms of W,(4) and ¢,(n,) employed.
Since 1, = 1 at any point on the primary loading path from which unloading is initiated, it follows from
Egs. (46) and (50) that

¢/1(1) = _ﬁ/()(;%) = —Wa, (53)

wherein the notation W, is defined. This is the current maximum value of the energy achieved on the
primary loading path. In accordance with the properties of W, W,, increases along a loading path. In view
of (53), the function ¢, depends (implicitly) on the point from where unloading begins through the energy
expended on the primary loading path up to that point.

When the material is fully unloaded, with 2 =1, 5, attains its minimum value, #,,.;, say. This is
determined by inserting these values into Eq. (50) to give, using the first Eq. in (40),

(:b/(r]lmin) = _ﬁ/()(l) =0. (54)

Since the function ¢, depends on the point where unloading begins then so does 7, ,,, that is it depends,
though W,,, on the value of 4,. The pseudo-energy function (46) has the residual value

V~V(1>'71mma 1) = &1 (M1 min)- (55)
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Thus, in the absence of the term associated with 7,, the residual (non-recoverable) energy ¢, (1, mi,) Mmay be
interpreted as a measure of the energy dissipated in the material during the loading—unloading cycle, as
discussed by Ogden and Roxburgh (1999a). This is the situation for the idealized Mullins effect, where there
is no residual strain. In simple tension ¢, (1, ;,) 18 then the area between the primary loading curve and the
relevant unloading curve. This interpretation requires a slight modification if there is residual strain (Ogden
and Roxburgh, 1999b), and in the present situation the role of #, has to be considered and will be discussed
in Section 5.2.2.
In order to satisfy the above requirements, we select the function ¢, so that its derivative is given by

—¢1(ny) = pmtanh ™" [r(ny = 1)) + W, (56)
where » and m are dimensionless positive material parameters, u being the shear modulus appearing in (40).
By combining Egs. (50) and (56) and rearranging we obtain
Wy — W)]

o (57)

1
nlzl——tanh[
r

The minimum value 7, ,;, of the variable #, is attained for A = 1, i.e. in the undeformed configuration, and
is given by

1 W,
Mmin = 1 —— tanh { '"} (58)
r um
Finally, integration of Eq. (56) gives ¢,(#,) explicitly in terms of the variable 5, in the form
_ m
¢ (1) = —pm(ny, — 1) tanh ™" (g, — 1)] = W, (g, — 1) — g_r log[l —*(n; — 1)2}~ (59)

The contribution of #; to Eq. (49) describes the softening response and is expressed in terms of the nominal
stress on primary loading by #, = 4. The variable 5, is restricted to be equal to 1 at the point where
unloading begins, to decay monotonically and to remain positive during unloading. This condition ensures
that ¢, remains positive during unloading; however, it does not permit the prediction of a residual strain.
We remark that this latter restriction was removed by Ogden and Roxburgh (1999b) so as to predict
residual strain with just a single additional variable. However, the second additional variable #, used here
allows more flexibility to effectively model the residual strain in combination with softening.

5.2.2. The residual strain effect

The additive contribution #, to the Biot stress in (49) modifies the overall response such that for A = 1 the
stress ¢ becomes negative. This is equivalent to having, at zero stress, a residual strain. During primary
loading 1, = 1 up to the point where unloading begins, but during unloading #, must be a decreasing
function. Since #; = 0 at 1 =1 we have ¢ = t, at that point. It is convenient to set 7, =0 at 2 =1 so that
0< 15, <1. We also take #, to be a monotonic increasing function of 4.

One possible expression, but by no means the only one, which satisfies the above restriction on the
limiting values of 5, is given by

~ (W)
1, = tanh ( W;/)V(/l)) /tanh(l). (60)

The exponent «(W,,) > 1 describes how the contribution # participates in the overall stress for a given N (1)
in Eq. (49). This formulation ensures that the residual strain depends on the maximum deformation seen by
the material at the end of the primary loading process.
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The damage function ¢,(,) is given implicitly by Eq. (45),. After specialization to uniaxial loading we
have

$2(12) = N (2). (61)

Using Eq. (60), Eq. (61) can in principle be integrated to give ¢,(1,), although it does not give an explicit
form such as (59).

5.3. Uniaxial reloading

When the material is reloaded starting from any point on the unloading path, the response is again given
by (49). During reloading, the energy stored in the material increases and so do the values of #, and #,,
according to Egs. (57) and (60). At the point where the softening variable , and the residual strain variable
1, become unity, the material will rejoin the primary loading path and upon further loading additional
damage will be generated in the material. This increase in damage is, however, only noticed during the next
unloading phase.

5.4. Anisotropy

Thus far we have assumed that the material response is isotropic even after unloading and, in particular,
when there is residual strain. However, such an assumption is in general untenable, for two main reasons.
Firstly, even if there is no residual strain (the idealized Mullins effect being operative) and the original
natural configuration is unchanged, the damage caused, by uniaxial deformation for example, must induce
a change in material symmetry relative to that configuration since a preferred direction has been generated.
This is the direction of the extension, which is recorded by the material and influences the subsequent
response, which in this case will be transversely isotropic. For some discussion of this point and related
matters we refer to the recent paper by Horgan et al. (2003).

Secondly, when a residual stress arises the natural configuration changes and the material response
relative to a different reference configuration in general has a symmetry different from that relative to the
original natural configuration. Again, for uniaxial deformation this will generate transverse isotropy. In
general, however, these two aspects of induced anisotropy are distinct.

Within the restricted context of pure homogeneous strain, and, in particular, the uniaxial deformation
considered here, such anisotropy can be modelled by a strain energy that is a function of the two stretches
/1 and 4, without requiring symmetry in these two variables (see, for example, Ogden, 2001). Thus, in (41)
we now consider W (1, A»,1,,1,) to be unsymmetric in /; and ,. However, we still take W;(4,,4,) to be
symmetric since this represents the response from the initial reference configuration, while the lack of
symmetry is attributed to N (A1, 42). In view of (45) this implies that there is no loss of symmetry associated
with 7,, only with #,. In a more general model in which #, and 5, are not uncoupled as in (42) generation of
anisotropy can also be associated with #;.

The above discussion is the basis for the specific model introduced in the following section, its appli-
cation to numerical results and comparison with the experimental data discussed in Section 2.

6. A specific material model

The strain energy for incompressible materials suggested by (41), when specialized to uniaxial loading in
(46), has Biot stress given by (49), which, for convenience, we repeat here:

t=hH+0n =171V7’0’(/1)+(1 _Wz)ﬁ/()»)- (62)
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To simulate the material response during primary loading shown in Figs. 1-3 and 5-7 we use the elastic
strain energy function due to Ogden (1972, 1984), namely

M
W(A1, Ay, A3 Z (A" + 23" 4+ A" — 3) /o, (63)

where o, and g, are material constants to be determined by experiment and M is a positive integer. Most
commonly M is taken to be 3. The constants must satisfy the requirement

M
Z Hon O = 241, (64)
m=1

where u(> 0) is the shear modulus of the material in the natural configuration (see Eq. (33)). The non-linear
iterative method known as the Levenberg-Marquardt algorithm (see, for example, Twizell and Ogden,
1983) is used frequently for calculating the constants u,, and o, m =1, 2, 3.

For the simple tension and compression specialization shown in Eq. (16), the strain-energy function
W (A1, A2, 23) becomes

o(2) = Zum (2 4+ 20707 — 3) /. (65)

m=1

The subscript 0 has been attached to W since we now use W(2) to describe the primary loading path in
simple tension. It follows that the Biot stress during primary loading is given by

= Zum (et = ), (66)

The stress softening during unloading is included in Eq. (49) primarily through the expression ¢ = 1,4,
where 7, is given by (57). We recall that 1, = 0 for 1 = 1.

To obtain a negative stress at zero deformation, which is a necessary pre-requisite for including residual
strains in the model, we use the neo-Hookean strain energy formulation for N in (41), modified to reflect
anisotropy and to include the dependence on the maximum principal stretch that the material has been
subjected to during primary loading. The selection of the neo-Hookean model is purely for illustration and
could be replaced by alternative models such as the model due to Varga (1966).

The modified neo-Hookean model suggested in this study may then be written as

N(2i, 2o, 3) = %[vl(zf — 1)+ (5 = 1)+ (45 - 1)), (67)

where the material parameter v;,, i = 1,2, 3, depends on the maximum stretch 4; provided 4; > 1. For
uniaxial loading Eq. (67) simplifies to

() =302 = 1)+ (4 w) (2 = D) (68)

The associated stress contribution #, in Eq. (62) is now given by

t=(1=m)N'(2) = (1 =m) (i =22, (69)

where v, = (v, + v3)/2 and 5, is given by Eq. (60).
The final expression for the Biot stress, valid for periodic uniaxial tension tests, becomes

M
t=m > (=27 (L= ) (A =AY, (70)
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with 7 =1fy on primary loading (5, =#, =1) and 5, and 5, given by (50) and (60), respectively, on
unloading.
When 1 =1 this reduces to

t=w —\_12, (71)

which must be negative for 4, > 1.

We now apply this model to simulate the combination of stress softening and residual strain accumu-
lation in the particle-reinforced rubber with 60 phr of carbon black, which, of the three specimens, displays
the largest stress softening and residual strain. The experimental data for this compound for periodic
loading in tension are shown in Figs. 3 and 7.

6.1. Numerical results

The primary loading is fully determined by the elastic strain energy in Eq. (63) with material parameters
u,, and o,,, m = 1,2, 3. These values are summarized in Table 1, from which we obtain x = 1.24 MPa. Fig. 9
shows the corresponding numerical results for loading up to A =3 and compares them with the experi-
mental data taken from Fig. 3. At this point unloading is initiated and the variables , and #, are activated.
The initial softening response is determined by #, given by Eq. (57). The dimensionless parameters » and m
are determined to be 1.25 and 0.965, respectively.

For small strains the influence of the residual strain affects the stress response through the variable 7,
and the function N in Eq. (62). It can easily be verified that #,, given by (60), is a monotonic function
decreasing with /, equal to 1 at the initiation of unloading and 0 when 4 = 1. The rate at which #, decreases
with 4 depends on the maximum strain energy W, during loading. In this representative example it is found
that a linear dependence on W, for the exponent « is sufficient and we obtain o = 0.3 + 0.161,,/u. To fully
determine the function N in (68), it is necessary to specify the dependence of v; on W, or equivalently 4,,. To
do this, we make use of the Biot stress corresponding to 4 = 1 given by (71). For the test data of the 60 phr
compound shown in Figs. 3, we find

1 S — 1
v = 0.4p {1 ~3s tanh ( 0l )}, (72)

and v, = 0.4u. In Fig. 9 the data are given by the circles and the numerical calculations based on the model
by the continuous curves. It can be seen that the fit of the model to the data is good.

With the material parameters given above the model was applied to periodic loading—unloading with
maximum stretches of 1.5, 2.0 and 2.5. The numerical results are shown in Fig. 10. Note that during
reloading, the stress path follows the previous unloading path until the maximum energy W, is again
reached and both variables 1, and 7, become unity. For further loading the material now follows the
primary loading path described by the strain-energy function W;. Fig. 10 shows that the model reproduces
the main characteristics of the material behaviour illustrated in Fig. 7. However, we have not compared the
numerical results in Fig. 10 with the corresponding data in Fig. 7 since the results in Fig. 10 have not made

Table 1
Summary of model parameters for primary loading curve of the 60 phr compound

Material model parameter, Ogden M = 3

H o H [£5] 3 o3
—1.528380 —1.011467 0.222564 4.2047799 —1.13418E-3 —4.398598

The values of p;, u, and yu; are given in MPa.
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Fig. 9. Comparison of numerical results and experimental data for a particle-reinforced compound with 60 phr of carbon black:
nominal stress plotted against stretch.

use of the data for stretches up to 4 = 1.5 and 1 = 2.0. The cyclic loading up to 4 = 1.5 and 4 = 2.0 in effect
changes the material properties so that subsequent loading up to a stretch of 1 = 2.5 follows a different path
from that experienced if a stretch of 4 = 2.5 is applied directly to the virgin material. This is not accounted
for presently in our model.

Let 4. (which depends on 4,,) be the residual value of 4 and let 1, and 7,, be the values of #, and », for
A =2, given by (50) and (61), respectively. The value of the energy is then W (4,,n,,,1,,) and the energy
dissipated in the loading-unloading cycle is W,, — W (A, 1y, 11a)-

Fig. 11 illustrates the extent of energy dissipation during cyclic loading and unloading as calculated on
the basis of Eq. (46). The function ¢, is given by (59) and ¢, can be determined from (61). On each
reloading—unloading cycle additional energy is dissipated if the previous value of 1, is exceeded. Fig. 11
shows that the energy returned upon complete unloading is less than the energy expended during loading/
reloading.

7. Discussion and conclusions
In this paper the theory of pseudo-elasticity, originally developed by Ogden and Roxburgh (1999a,b) has

been used to provide a constitutive model for quasi-static loading—unloading of rubber that accounts for
stress softening and residual strain.
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Fig. 10. Comparison of numerical results and experimental data for a particle-reinforced compound with 60 phr of carbon black with
maximum stretches 4 = 1.5, A = 2.0 and 4 = 2.5: nominal stress plotted against stretch.

The theory uses two deformation-dependent scalar functions to modify the elastic strain-energy function
under cyclic loading. A number of material parameters are included in the model to enable the fitting of the
simple tension data obtained. The dissipative character of the material is also accounted for.

The suitability of the theory has been demonstrated for a particle-reinforced rubber (filled with 60 phr of
carbon black) in the simple case of uniaxial cyclic loading and unloading in tension. It is shown that the
model provides a good fit to the experimental data for cyclic loading up to constant value A = 3. However,
if the same model (with the same material parameters) is used to simulate cyclic loading to smaller fixed
stretches, the quality of the fit is less satisfactory. It is important to note that periodic loading—unloading
changes the original (virgin) material by introducing a preferred direction, i.e. the material becomes
anisotropic. If the material is then subsequently loaded to a higher stretch in the same direction, the re-
sponse will no longer be the same as the original virgin response. In other words, the idealized Mullins
effect, in which the material remains isotropic and residual strain is neglected, does not provide a true
representation of the actual material response.

The theory of pseudo-elasticity presented in this paper will therefore be extended to account for the
evolving anisotropy and the influence of low strain cycles on higher strain response. The model will include
reloading response that differs from the unloading response and hence the hysteresis seen in Figs. 1-3 and
5-7. The theoretical framework described here may also be adapted to more general deformations than the
simple tension discussed.

An extension of the theory of pseudo-elasticity to inquire into the thermodynamic and microstructural
interpretation supporting the model proposed is under development and will be part of a forthcoming
publication.
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Fig. 11. Plot of the pseudo-energy against the stretch showing the extent of energy dissipation during cyclic loading and unloading.
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